St. Joseph's College of Commerce (Autonomous) #163, Brigade Road, Bangalore – 560 025

LESSON PLAN (MODULE WISE)

COURSE: B.COM SEMESTER: III CODE&SUBJECT: UG15A0009 OPERATIONS RESEARCH

Lecture Hours: 60

OBJECTIVE:

• To provide a good foundation in the mathematics of operations research and appreciation of its potential application for decision making in the business world.

Sl. No	UNIT & OBJECTIVES	No. of Lecture Hours	Methodology/ Instructional Techniques	Evaluation/ Learning Confirmation
MODULE	INTRODUCTION TO OPERATIONS			
	<u>RESEARCH</u> <u>Objective:</u> To have an overview of Operations Research and various techniques of decision- making.	4		
1.	Meaning – Nature and Scope of Operations Research	1	Lecture using PPT and Classroom Discussions	Written Test
2.	OR Models – Nature- Limitations of OR	2	Lecture using PPT and Classroom Discussions	Written Test
3.	Applications of OR	1	Lecture using PPT and Classroom Discussions	Written Test
MODULE 2	INTRODUCTION TO LINEAR PROGRAMMING Objective: To learn to formulate equations and solve graphically using linear programming technique.	12		

2.	Basic Concepts – Construction of LP model Problems on Formulation- Graphical Method	2	Lecture using PPT and Classroom Discussions Lecture and	Assignment Solving Extra
	of Solution	5	Solving Problems in Classroom	Problems Outside Classroom
3.	Maximization and Minimization Problems (Simple Problems)	5	Lecture and Solving Problems in Classroom	Assignment
MODULE 3	<u>SIMPLEX METHOD</u> <u>Objective:</u> To learn to solve linear programming problems through iteration process and understand the importance of introducing different variables.	14		
1.	Introduction - Standard LP Form and Basic Solutions	1	Lecture using PPT and Classroom Discussions	Question and Answer in the form of Quiz
2.	Slack – Surplus – Unrestrictive Variables	1	Lecture using PPT and Classroom Discussions	Question and Answer in the form of Quiz
3.	Simplex Algorithm - Artificial Solution	6	Lecture and Solving Problems in Classroom	Assignment
4.	Big-M method	4	Lecture and Solving Problems in Classroom	Assignment
5.	Minimization of LPP – Duality	2	Lecture and Solving Problems in Classroom	Solving Extra Problems Outside Classroom
MODULE 4	<u>TRANSPORTATION PROBLEM</u> <u>Objective:</u> To learn to solve problems on transportation using different methods and decision-making.	14		

1.	Meaning – Introduction to Transportation Models – Trans- shipment Problems (concept only)	1	Lecture using PPT and Classroom Discussions	Question and Answer in the form Quiz
2.	LPP formulation - Methods to Finding Out Initial Solution (NWCM, VAM & LCM)	6	Lecture and Solving Problems in Classroom	Solving Extra Problems Outside Classroom
3.	Economic Interpretation of Ui's and Vj's	1	Classroom Discussions	Question and Answer
4.	Testing for Optimality- MODI Method- Loops in transportation table and its properties	6	Lecture and Solving Problems in Classroom	Question and Answer
MODULE 5	<u>ASSIGNMENT PROBLEM</u> <u>Objective:</u> To learn to solve linear programming problems through the technique of Assignment Problems using Hungarian Method and decision-making.	8		
1.	Introduction-Mathematical Statement of the Problem	1	Lecture using PPT and Classroom Discussions	Question and Answer
2.	Methods of Solving Assignment ProblemEnumeration- Simplex and Transportation (Theory)	1	Lecture using PPT and Classroom Discussion	Question and Answer
3.	Hungarian Method	6	Lecture and Solving Problems in Classroom	Assignment
MODULE	NETWORK ANALYSIS			
6	Objective: To understand the importance of using Network Techniques, Drawing Network Paths and Decision-Making.	8		
1.	Introduction and Guidelines for Construction of Network Diagram	1	Lecture using PPT and Classroom Discussions	Quiz
2.	Deterministic Time Estimates- Developing	2	Lecture and	Solving Extra

	a Project Network		Case Study	Problems
			problems	Outside
				Classroom
3.			Lecture and	Solving Extra
	Project Duration and Critical Path -	3	Solving	Problems
	Forward Pass – Backward Pass- Floats	5	Problems in	Outside
			Classroom	Classroom
4.			Lecture and	Solving Extra
		1	Solving	Problems
	Probabilistic Time Estimates		Problems in	Outside
			Classroom	Classroom
5.			Lecture and	Question and
	Difference Between PERT and CPM	1	Discussion in	Answer
			Classroom	

DATES & NATURE OF CIA:

1] First Unit Test 10 marks - between November 28th - December 5th, 2016 - Written Test/Online.

2] Mid Term Exams 20 marks – January 16th -18th, 2017.

3] Second CIA for 10 marks – between February 10th-15th, 2017 – Assignment/Project.

Submitted By: Sneha S. Rai Assistant Professor